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Abstract 

The Takagi-Taupin theory of X-ray diffraction leaves 
an ambiguity in the choice of the wave vector inside 
the crystal. This holds also for its imaginary part 
which describes absorption. One consequence of this 
ambiguity is that the wave vector ko inside the crystal 
need not always satisfy the continuity conditions for 
the tangential component of the wave vector at the 
entrance surface. But if the direction of the imaginary 
part is once fixed then it determines the particular 
manner of solution of the Takagi-Taupin equations. 
Thus a direction of the imaginary part of the wave 
vector in the crystal parallel to the reflecting net planes 
will in general ensure that the continuity condition 
is not satisfied; only a wave vector with an imaginary 
part perpendicular to the crystal surface can satisfy 
this condition. 

1. Introduction 

Dynamical X-ray diffraction in perfect and distorted 
crystals may be described by the Takagi-Taupin 
equations (Takagi, 1962, 1969; Taupin, 1964). An 
important feature of this theory is that the 'ampli- 
tudes' Dh(r) of the generalized Bloch waves are not 
constant but are slowly varying functions of position. 
This fact leaves an ambiguity in the choice of the 
wave vector ko inside the crystal. After Takagi a 
convenient choice is that the magnitude of ko is given 
by 

Ikol = k :  ng, ( la)  

where n is the mean refractive index and K = I/A, 
the wave number in vacuum, and sometimes that 

k0 may satisfy the continuity condition for the tangen- 
tial component of the wave vector at the entrance 
surface. (1 b) 
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The Takagi-Taupin equations are also applicable in 
the case of an absorbing crystal, provided that all 
relevant quantities now assume complex values. The 
real and imaginary parts of ko are called kor and K, 
respectively, so that 

ko = ko, + iki .  (2) 

The direction of ki may be chosen arbitrarily. 
However, this choice influences the particular manner 
of solution of the equations. Hence it determines 
whether or not ko satisfies the continuity condition 
(lb) and whether or not the parameter ]3h [(4)] may 
be chosen equal to zero. In principle these problems 
are solved in the literature but they have never been 
pointed out explicitly. 

2. Takagi-Taupin equations and boundary conditions 

Let us recall the well known equations, for simplicity 
in the case of a perfect crystal and for the two-beam 
case: 

3 
n Do(r) = -iTrKxgCDh(r) 
3So (3) 

Dh(r) = -iTrKxhCDo(r) + 27riK[3hDh(r) 
3Sh 

where Xh and X~; are the Fourier coefficients of the 
dielectric susceptibility; C is the polarization factor; 
So and Sh are unit vectors along the refracted and 
reflected directions; 

flh = (k2h-k2)/2K 2 (4) 

where ko and k h a re  vectors inside the crystal and K 
is the wave vector in vacuum. The extremities of both 
wave vectors ko and kh are matched through the value 
of/3j,. 
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The boundary conditions along the entrance sur- 
face are, in the Laue case, 

Do(re) = D(oa)(re) exp [ - 2 ~ i ( K o -  ko)re] 

Dh(re) = 0  (5) 

0D°(re) = 0  
0So 

ÜDh(re) =-iTrKxhCD(oa)(re) exp [-21ri(Ko-ko)re],  
OSh 

and in the Bragg case, 

Do(r,) = D(oa)(re) exp [ - 2 ~ i ( K o -  ko)re] 

aDh(re) = -izrKxhCD(oa)(re) exp [-27r i (Ko-  ko)re] 
ash 

+ 2"MKflhDh (re), (6) 

where re is the position vector of a point on the 
entrance surface and D(oa)(re) is the amplitude of the 
incident wave in vacuum at the point re. The real 
wave vector of this wave is Ko. 

3. Introduction of absorption 

The complex wave vectors have the form 

ko = kor + iki (2) 

kh = kar + iki. (7) 

From (1 a) it follows that 

ko 2 = K2(1 + Xo) --- K2(1 + Xor + iXoi). 

After separating real and imaginary parts and neglect- 
ing quadratic terms of ×Or and Xo~ one gets 

ko, = KXoi/2 cos r/o = -/z/47r cos r/o (8) 

kor = K ( l + Xor) (9) 

where r/o is the angle between kor and k~ and /x is 
the linear photoelectric absorption coefficient. The 
real and imaginary parts of flh are 

f l h r = ( k 2 r - k 2 r ) / 2 K 2 = ( k h r - k o r ) / K  (10) 

f lh~=(kJK2)(khrCOS r/h-- kor COS r/o) (11) 

where rlh is the angle between khr and k~. 

4. Solution by the method of Riemann 

Authier & Simon (1968) presented analytical solu- 
tions of (3) for a perfect crystal in the Laue case. If 
one converts (3) into two second-order differential 
equations of hyperbolic form, 

02Do 

OSo OSn (12) 
OEOh 

OSo OSh 

they can be solved by the method of Riemann. 

_ _  _ 27fifth ODo + 7r2K2C2XhXfiD 0 __ 0 
OSo 

- -  - 2 ¢riflh a Dh + 7rt K 2 C 2 Xh)( fi Dh = 0,  
OSh 

Let us first assume the Laue case and let P be a 
point on the exit surface and A and B two points on 
the entrance surface [see Authier & Simon (1968), 
Fig. 2]. Then the solution at P for Dh can be expressed 
in the form 

iqrKCXh'Y° f 
Dh( P) = si---n 2---~B D(oa)(~)v( i~) de  

BA 
where 

(13) 

~'o = cos ~o.  ~o = z_(So, n) 

rh =COS ~h. ~h =/--(Sh, n) 
and n is a unit vector perpendicular to the entrance 
surface and directed within the crystal. In the Bragg 
case equation (13) has the same form except for the 
definition of v. The function v in (13) is the Riemann 
function given by the following conditions: 

02----~v + 2 ~ i K  O(flhV) + 7r2K2C2Xh)(fil9 __ 0 (14) 
OSo OSh OSo 

OO/OSh =--2¢riKflhO on BP 

Ov/Oso = 0 on A P  

v ( P ) =  1. 

Now there are two ways in the literature of solving 
(14): 

(1) Because of the ambiguity in the choice of ko 
( a n d  kh) we can assume that 

13, =0 .  (15) 

which leads to a specially simple form of (12). 
But this choice has the following consequences: 
(a) From (11) it follows that 

'iTh = "/70 = (~B ° 

This means that ki must be directed parallel to the 
reflecting net planes. So the choice (15) f ixes also the 
direction of ki. 

(b) When ki is fixed parallel to the reflecting net 
planes, then condition ( lb)  cannot be fulfilled in all 
cases and the boundary conditions remain in the form 
(5). 

(c) The solution of (14) for/3h = 0 is 

V = Jo(~) (16a) 

with 

~ = 2 ~'K (XhX a) I/2{[ So - So( P ) ][ Sh - Sh ( P ) ]} l/2 

o r  

with 

v(x) = Jo[ B( 12 - x2) 1/2] (16b) 

B = 2 ~rKI CI(xhX ~)1/z(~/o rh)l/21sin 20B 

where x is a coordinate along BA = 21 with respect 
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to the middle of BA (Authier & Simon, 1968) and Jo 
is the Bessel function of order 0. The solution for D h 
becomes 

where 

Dh (P) = - ( iTrKf  Xh 3/0/sin 20B ) 
I 

× ~ D~o")(x) exp (-2zriTx) 
-l  

x Jo[B(l 2 - x2) l/z] dx (17) 

T =  (Ko-ko)re = Tr+iT~. (18) 

The value T of the projection of the difference 
between the vectors K0 and ko on the entrance surface 
is complex because of the complexity of ko. 

(2) We can also assume that 

T = 0 .  (19) 

This has the following consequences: 
(a) Condition (19) is equivalent to condition (lb).  

Both can be fulfilled only if k~ is perpendicular to 
the entrance surface. So the choice (19) also fixes the 
direction of ks, but in a different way from before. 
The boundary condition (5) takes on a simpler form. 

(b) From (11) it now follows that 

/3h ~0.  

(c) The solution of (14) in the case flh # 0 is 

V=Jo(~)exp{--ETriKflh[Sh--Sh(P)]} (20) 

o r  

v(x) - Jo[ B( I ~- x~) '/~] 

x exp [--27riK[Jh(--t/2yh + yox/sin 208)]  

where t is the distance of P from the surface. 
The solution for Dh becomes 

Oh ( P )  = - ( izrKCXh 3/0/sin 20B ) exp ( iTrg[3ht / )'h ) 

I-  (--2 7riKflh Yox~ X D~o")(x) exp 
t sin 2OB ] 

XJo[B(12-x2) '/2] dx. (21) 

If one takes into account the phase factor for the 
entire amplitude (that is the boundary conditions on 
the exit surface) 

Dh°(r) = Oh(r) exp (-21rikhr) (22) 

and neglects complex factors not contributing to the 
intensity, (17) and (21) can be written in the form 

D~ ( P) = - (  iqrKCXh To/sin 2 tg~) 
1 

x ~ D~o")(x)A(x)Jo[B(12-xZ) ~/2] dx (23) 
- I  

with 

a ( x ) = e x p ( - - ~ [ ( l + l ) + l ( 1 - 1 ) ]  }. (24, 
\ Yo Yh/ 

Thus, independent of the method chosen and of the 
fact that the direction of ki is not arbitrarily chosen, 
the result for D~ is the same. 

The same considerations can be applied to the 
Bragg case. Here Uragami (1969) presented an ana- 
lytical solution of (3). For a perfect crystal the ampli- 
tude at the point x ° on the entrance surface is equal to 

o .  (x °)  = - (xh  ~o/x ~1 v~l),/2 

f j I[B(xO_x) ] D~o,,)(x)A(x) 
X X Q - -X  BA 

with 

x exp (-27riT~x) dx (25) 

A ( x ) = e x p (  tx Y°-yh ) 
2 sin 26)B x (26) 

Tr= K[yo A6)+Xor(.yo-yh)/2sin26)B], (27) 

where / tO is the deviation angle of Ko from the exact 
Bragg condition, 

5. Concluding remarks 

When solving the Takagi-Taupin equations, the 
direction of the imaginary part of the wave vector ks 
is not of such great ambiguity as widely assumed. 
Once the direction of ks is fixed the special form of 
the boundary conditions (T equal or not equal to 
zero) for the amplitudes is also fixed and the question 
of whether or not ko satisfies the continuity condition 
for the tangential component of the wave vector at 
the entrance surface is answered. Two choices for ki, 
ki perpendicular to the entrance surface of the crystal 
or ks parallel to the reflecting net planes, are the most 
convenient ones. In other cases neither T nor flh 
equals zero and absorption enters the final solution 
through the imaginary parts of T and flh simul- 
taneously. It must be emphasized that only a ki (or 
the component of ki) perpendicular to the entrance 
surface has a concrete physical meaning. In the case 
of refraction and reflection of a wave at an absorbing 
medium (Born & Wolf, 1965) the imaginary part of 
the wave vector ki is directed perpendicular to the 
surfaces of constant amplitude which are planes 
parallel to the boundary and is proportional to the 
absorption coefficient. This also holds in the case of 
dynamical X-ray diffraction. 
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Schiller-Universit~it Jena, Dr J. Gronkowski, 
University of Warsaw and Dr V. Hol~, J. E. Purkyn6 
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Abstract 

The diffuse scattering from single crystals of 
nominally Ni-10 at.% AI, quenched after heat treat- 
ment at 973 K, has been measured with Mo K a  radi- 
ation. The data were analysed for the contributions 
due to short-range order and static atomic displace- 
ments. Consistency of the structural parameters as 
determined by three different methods, the separation 
methods of Georgopoulos-Cohen and Boric-Sparks 
and the least-squares method of Williams, is demon- 
strated for the first time. The variation of the first few 
short-range-order parameters az,,n with the coordina- 
tion shell Iron strongly resembles that of the L12 
superstructure. Employing these parameters to model 
a short-range-ordered computer crystal with 13 104 
atoms, a preference for configurations of the L12 
superstructure type is found, though no Ni3A1 
embryos are observed. The values of Ollm n rapidly 
reach those for a random solid solution. 

1. Introduction 

Nickel base superalloys are technologically important 
because of their favourable mechanical properties at 
temperatures up to about 1200 K. In many of these 
alloys, ordered Ni3 Al-type precipitates (3" phase with 
L12 superstructure), coherent with the 3" matrix, are 
responsible for high mechanical strength by impeding 
dislocation motion. N__ii-Al solid solutions may be seen 
as a prototype of other superalloys that can be 
obtained by a partial substitution of the Ni and A1 
atoms. 

Ordering and decomposition have been studied in 
N___ji-AI alloys as well as in technological alloys by 
various methods, such as small-angle neutron 
scattering (Beddoe, Haasen & Kostorz, 1984), trans- 
mission electron microscopy (GrShlich, Haasen & 
Frommeyer, 1982) and atom-probe field-ion micros- 
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copy (Wendt & Haasen, 1983). Earlier work is found 
in the references just quoted. 

High-angle scattering has been employed to study 
local atomic arrangements in various binary Ni-rich 
alloys, such as Ni-Cr, Ni-Mo, Ni-Fe; for a review 
see Kostorz (1983). One high-angle scattering 
measurement on Ni-12.7 at.% A1 was recently per- 
formed by Epperson & Fiirnrohr (1983). The short- 
range-ordered state quenched in from 1323 K was 
analysed by the method introduced by Boric & Sparks 
(1971). 

In the present study, single crystals of Ni with 
nominally 10 at.% AI were used for an investigation 
of short-range order. As this concentration is still 
within the 3' region, the formation of 3" particles is 
avoided, and the short-range-ordering properties of 
the 3' phase may be investigated. The method of 
Georgopoulos & Cohen (1977), most appropriate for 
the diffuse scattering of X-rays, is employed to analyse 
the data. This method also allows individual atomic 
displacements to be determined. Two other methods, 
the one proposed by Borie& Sparks (1971) and the 
least-squares method suggested by Williams (1972), 
have also been applied in order to evaluate the 
influence of various methods on the resulting struc- 
tural parameters. 

2. Experimental 

A single crystal of Ni with nominally 10at.% AI, 
about 6 cm long and 12 mm in diameter, was grown 
under an argon (5N7) atmosphere in a high-purity 
A1203 crucible by the Bridgman technique; the start- 
ing alloy was prepared from 99.99at.% Ni and 
99-999 at.% A1. The single crystal was homogenized 
in argon for 24h at 1373 K and water quenched. 
Subsequently two slices about 3 mm thick, with a 
surface normal near the [119] direction, were spark 
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